
STEAM PRESSURE REDUCING VALVE

APPLICATION

The pressure regulator or controller (reducing valve) decreases the inlet pressure of a fed medium on a required outlet pressure and keeps it on a set point. It serves to the regulation of the pressure of steam. The regulators or controllers are reducing valves which are not suitable for a tight piping closing. Application:

Steam distributions

TYPES / DN / PN / TEMPERATURES / EXECUTION

R22 117 616 DN 25, $40 \div 100$ PN16 0 °C to 300 °C It is produced in the ST execution.

FUNCTION

The valve with a straight control that decreases the inlet pressure on the required outlet pressure. The outlet pressure is set and kept by a spring. Every spring corresponds to a certain pressure span. At adjusting on another pressure span it is necessary to change the spring according to a producer regulation.

The reduced pressure acts on an upper diaphragm side and a spring force acts on a lower side. An equilibrium is failed by a reduced pressure drop, the cone coupled with the diaphragm is lifted and the pressure begins to rise till to the set point. At a rise of the reduced pressure a procedure is reverse. The space over the diaphragm is interconnected with the outlet piping by an impulse pipe.

INSTALLATION

The controllers or reducing valves are mounted in places with a pressure rest flowing. They are installed on principle into the horizontal pipeline with the diaphragm down there (see fig.). For a correct installment of the regulator or the reducing valve into the pipeline and for a correct connection of an impulse piping it is necessary to follow a producer regulation for the installation, attendance and maintenance PN 8 670 107; the filter for trapping impurities must be mounted before the regulator.

ADMISSIBLE PRESSURES AND TEMPERATURES

	Temperature [°C]							
DN	120	150	180	200	230	250	300	
	The highest working overpressure [bar]							
25÷100	13	13	13	12,8	11,8	11,2	9,6	

DN	25	40	50	65	80	100
Outlet overpressure span [bar]	0,1-8	0,1 - 6		0,1 - 4		- 4

Minimum difference pressure: p_{inlet} (abs) / p_{outlet} (abs) $\geq 1,2$

MATERIAL AND CONNECTION

	R22 117 616			
Body, cover, lid, adapter	GG25			
Body seat	STAINLESS STEEL			
Function parts	STAINLESS STEEL			
Diaphragm	DIAPHRAGM CLOTH			
Packing	ASBESTOS-FREE			
Connection	DIN			
Constructional lengths (dimensions)	According to EN 558-1			

DIMENSION TABLE

PN	16						
DN	25	40	50	65	80	100	
D [mm]	215	260	260	260	335	335	
L [mm]	160	200	230	290	310	350	
V_1 [mm]	615	735	735	735	915	915	
V_2 [mm]	100	125	125	125	160	160	
m [kg]	23	40	41	43	79	87	
Flow coefficient Kvs [m³/h]	15	21	26	31	55	80	

Note: Connecting flange dimensions see pages 114, 115.